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1.  INTRODUCTION

The marine environment is a highly dynamic sys-
tem, in which individuals must cope with environ-
mental variability (e.g. Reed et al. 2009). However, in
the current context of global changes, they face rapid
local transformations which modify the environmen-
tal selective pressures acting on them (e.g. Lescroël
et al. 2014). During the breeding season, many pred-
ators are constrained to find food within a restricted

range (e.g. Hamer et al. 2007), increasing the pres-
sure they face. It is therefore necessary to understand
how individuals adjust their behavioural response to
their environments, and how this affects their fitness,
in order to predict potential consequences of current
or future changes on their population dynamics.

Individuals routinely search for food over various
spatial (Ceia et al. 2012, Baylis et al. 2015, Camprasse
et al. 2017a) and temporal scales (Pichegru et al. 2012,
Sherley et al. 2013a, Arthur et al. 2015) throughout
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their life cycle. Optimal foraging theory suggests that
they should adapt their strategies to maximize forag-
ing efficiency, and therefore, fitness (Pyke et al.
1977). Although flexibility is described as a mecha-
nism that increases foraging efficiency in a variable
environment (e.g. Grémillet et al. 2012), accumulat-
ing evidence indicates that individual specialisation
and behavioural consistency may also be adaptive
(Wakefield et al. 2015, Patrick & Weimerskirch 2017).
It is therefore crucial to understand inter-individual
differences in behaviour (Ceia & Ramos 2015), since
the population response may conceal individual
reactions (Potier et al. 2015). The recent emphasis in
ecological research towards an individual approach
(as opposed to a traditional population approach) has
revealed the potential importance of individual vari-
ability in population processes (e.g. López-López
2016).

Individual specialisation, i.e. the use of a subset of
the resources exploited by the population (Bolnick et
al. 2003), is widespread in many taxa, including mar-
ine species (reviewed by Araújo et al. 2011). Simi-
larly, individual consistency in foraging or diving
behaviour, which reflects individual specialisation in
space use (Ceia & Ramos 2015), exists over short- and
long-term periods in turtles (Schofield et al. 2010),
marine mammals (Kernaléguen et al. 2012, Arthur
et al. 2015) and seabirds (Ceia et al. 2012, Wakefield
et al. 2015). Individual specialisation has received
increasing attention over the past 2 decades (e.g.
Ceia & Ramos 2015), and findings suggest that this
strategy potentially impacts population dynamics.
Specialisation, through diet, consistency in foraging
or migration, has been related to intrinsic (e.g. sex;
Müller et al. 2014 or body mass; Ratcliffe et al. 2013)
and extrinsic factors (e.g. breeding site; Camprasse
et al. 2017a or environmental conditions; Ceia et al.
2014a). However, other factors such as personality
(i.e. consistent individual differences in behaviour
which persists through time; Bell et al. 2009) have not
yet been related to individual consistency in foraging
behaviour or diet in marine predators. Indeed, there
is growing evidence that personality traits, foraging
consistency and individual specialisation may covary
in the wild (Toscano et al. 2016). Testing the effect of
personality traits on individual specialisation might
clarify how personality influences fitness. Certainly,
in the wild, breeding success can differ between per-
sonality types and  personality assortment within a
pair (e.g. Patrick & Weimerskirch 2014a). Individual
specialisation may potentially be a proximate mecha-
nism through which personality influences reproduc-
tive success.

Woo et al. (2008) suggested that the fitness benefits
of being a specialist may vary temporally as prey
availability and predictability fluctuate. This hypo -
thesis potentially explains why consistent and flexi-
ble strategies are maintained in a population (e.g.
Abrahms et al. 2018). For example, in northern ele-
phant seals Mirounga angustirostris, the relationship
between mass gained and site fidelity fluctuated
between years of positive or neutral phases of the
Pacific Decadal Oscillation (Abrahms et al. 2018).
However, some research has suggested that some
strategies are consistently advantageous. For exam-
ple, Golet et al. (2000) found that prey specialisation
in pigeon guillemots Cepphus columba enhanced
chick growth. Similarly, Patrick & Weimerskirch
(2017) found that site-faithful, black-browed alba-
trosses Thalassarche melanophrys exhibited high
breeding success over short- and long-term scales.
Nonetheless, the impact of behavioural consistency
on breeding success over fluctuating environmental
conditions remains poorly studied in top predators.

Colonial seabirds are of major interest for indi -
vidual-based studies because these predators are
central place foragers, and therefore are easily acces-
sible when breeding (e.g. tracking using global posi-
tioning system [GPS] loggers). During the breeding
season, African penguins are restricted to foraging
within limited distances from their nesting ground
(ca. 45 km; Pichegru et al. 2010, 2012, 2013), so that
availability of forage resources in proximity to the
colony is necessary for reproductive success (Sherley
et al. 2013b). In this species, individuals feed prima-
rily on small pelagic fish, sardines Sardinops sagax
and anchovies Engraulis encrasicolus (Crawford et
al. 2011), and are therefore considered a specialist
species. Consequently, strategies reducing intra-spe-
cific competition during the breeding season would
be advantageous. The foraging behaviour of African
penguins has been well studied (Pichegru et al. 2013,
Sherley et al. 2013a, van Eeden et al. 2016). For
example, African penguins adjust their strategy at
sea according to their boldness and sex (Traisnel &
Pichegru in press). However, little is known about
individual short-term consistency in their foraging
strategies (i.e. trip characteristics) over consecutive
days, its link to intrinsic and extrinsic factors and its
potential effect on reproductive output in this spe-
cies. As African penguins are endangered, an under-
standing of their behaviour and ecology is needed to
maximise the benefits of conservation management.

In this study, we examined inter-individual dif -
ferences in consistency of foraging metrics (e.g. trip
duration, maximum distance to the colony) on a
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short-term scale at the population (i.e. overall consis-
tency across individuals of the same population) and
individual level (i.e. within individual consistency).
We tested whether intrinsic (sex and boldness) and
extrinsic (year) factors influenced individual consis-
tency in foraging behaviour over a breeding season.
We expected sex and boldness to affect individual
consistency in foraging behaviour, as they have been
found to influence different aspects of foraging be -
haviour in this species (Pichegru et al. 2013, Traisnel
& Pichegru in press). By combining data based on
GPS loggers over 3 yr (2015−2017), we explored
whether individual consistency differed with envi-
ronmental conditions. Finally, we related individual
foraging consistency over consecutive trips to breed-
ing success using chick growth rates, as benefits of
behavioural consistency have been shown to fluctuate
between years in other marine predators (Abrahms
et al. 2018).

2.  MATERIALS AND METHODS

2.1.  Data collection

Foraging behaviour was assessed using miniature
GPS devices (CatTrack/I-gotU 44.5 × 28.5 × 13 mm,
~20 g; Perthold Engineering/Mobile Action, <1.5%
of adult body mass) on African penguins Spheniscus
demersus rearing chicks 1−3 wk old. During this
period, males and females alternate nest protection
and foraging (Randall & Randall 1981). The loggers
were deployed for consecutive trips (mean ± SD:
2.85 ± 0.98 trips) between April and June (peak of
the brooding period) on Bird Island, Algoa Bay, South
Africa (33° 50’ S, 26° 17’ E) during 3 consecutive years
(2015−2017). The devices recorded latitudinal and
longitudinal locations every 1 min (accuracy of
<10 m) and were placed in a sealed, heat-shrink tube
(EPS3248; Hellermann Tyton). Birds were captured
prior to a departure, weighed and equipped with a
logger taped to their lower back feathers (Tesa®

tape, 4651). Devices were removed after several days
(mean ± SD: 4.38 ± 1.21 d), and additional morpho-
metric measurements (bill depth and length, flipper,
weight) were taken to assess gender (see Pichegru et
al. 2013, Campbell et al. 2016, and details of proto-
col in Traisnel & Pichegru 2018). Overall, we tracked
59 breeding adults for a total of 168 tracks (2−6 trips
ind.−1; Table 1) between 2015 and 2017. Individuals
were not tracked repeatedly across years.

In 2015 and 2017, we assessed boldness in nest
defence for all tracked penguins during a standard

human approach to the nest (e.g. Brommer et al.
2014, Pichegru et al. 2016): one experimenter slowly
approached the nest when only one of the parents
was attending to avoid bias due to the presence of a
partner (Schuett & Dall 2009). The experimenter
crouched 1 m away from the nest for 30 s, holding a
wooden pole a few cm from the penguin’s head
(a standard protocol to mark adults in this species),
and the bird’s response was filmed. From the videos,
we extracted the total number of attacks (reaching
towards or pecking the pole) and the total number of
threats (head rotation from side to side alternately
and irregularly from a forward-facing position; see
Traisnel & Pichegru 2018 for details) during the ex -
periment. These behaviours were previously deter-
mined as a proxy for boldness (Traisnel & Pichegru
2018), a personality trait, as they are repeatable
within and between breeding seasons (Traisnel &
Pichegru 2018).

We assessed breeding success from chick growth
rates, as faster growing chicks are more likely to
fledge at a greater mass in this species (Cooper
1977), therefore increasing their probability of sur-
vival (Wolfaardt et al. 2008). We measured chicks’
mass for 3−5 wk during the linear phase of the
growth (i.e. head length >65 mm, see Fig. S1 in Sup-
plement 1 at www.int-res. com/ articles/ suppl/ m0608
p279_ supp. pdf). The measurements were separated
by at least 5 d. We determined growth increments
(GI, in g d−1) using:

GI = (Mass 2 − Mass 1) / (Date 2 − Date 1) (1)

Growth increments were then averaged to obtain
an estimate of growth rate chick−1. Information on
chick growth rates was collected for 47 penguins
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Year Total
2015 2016 2017

Nind (trip = 2) 3 11 14 28
Nind (trip = 3) 5 4 8 17
Nind (trip = 4) 5 2 3 10
Nind (trip = 5) 2 1 − 3
Nind (trip = 6) 1 − − 1
Nind total 16 18 25 59

Ntrip total 57 47 64 168

Table 1. Sample size associated with the number of individ-
uals (Nind) and trips (Ntrip) recorded during the chick-rearing
period by GPS devices deployed on adult African penguins
between 2015 and 2017 on Bird Island, Algoa Bay (South
Africa). Number of trips recorded per penguin ranged from
2 to 6; therefore, we summarised the number of individuals
(Nind) that were successfully tracked over 2, 3, 4, 5 or 6 trips 

each year

http://www.int-res.com/articles/suppl/m608p279_supp.pdf
http://www.int-res.com/articles/suppl/m608p279_supp.pdf
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tracked with GPS loggers: 15 in 2015, 13 in 2016 and
19 in 2017. Overall, growth rates were estimated for
72 chicks: 33 first-hatched (double brood clutch), 25
second-hatched (double brood clutch) and 14 single
chicks.

2.2.  Data extraction

All analyses were performed using ArcMap 10.5
and R Studio version 3.3.2. For each individual, the
different trips recorded were visually separated
using ArcMap. ‘Trip’ and ‘argosfilter’ packages were
used to apply a speed filter of 12.4 km h−1 to remove
erroneous data exceeding the maximum swimming
speed of African penguins (Pichegru et al. 2017). Any
incomplete trip for which the last location was the
furthest from the colony was discarded. Similarly, we
excluded any trip with gaps >2 h (due to signal loss),
unless the gap occurred in the inbound phase of the
trip, when signal loss can occur due to a bird’s high
traveling speed. In that case, the track was interpo-
lated as a straight line. To approximate the most
probable path used during signal loss (trips with gaps
<2 h), we interpolated the tracks at 2 min intervals
using a non-stop correlated random walk model from
the ‘crawl’ package (Johnson et al. 2008). We then
extracted the following parameters from the data:
maximum distance from the colony (km), trip dura-
tion (h), path length (sum of the distances between all
consecutive locations during a foraging trip, km),
bearing from the colony to the furthest point of the
trip (degrees, ranging from 0 to 360°) and a straight-
ness index reflecting search effort (Benhamou 2004),
calculated using:

SI = (Maximum distance × 2) / Path length (2)

2.3.  Population level consistency

We assessed short-term foraging consistency at the
population level by assessing the penguins’ repeat -
ability over consecutive trips during the breeding
season. We estimated a repeatability index (R) and
associated p-value for 4 of the foraging parameters
(maxi mum distance, trip duration, path length,
straightness index) using the ‘rptR’ package (Stoffel
et al. 2017). Repeatability indices were estimated
from generalised linear mixed models (GLMMs) fit-
ted by a restricted maximum likelihood (REML) with
penguin ID as random factor. We specified year as a
fixed effect to control for environmental variability,
as prey abundance differed between years (Fig. S3,

Table S1 in Supplement 2). All models were per-
formed using a Gaussian error and maximum dis-
tance was log transformed to approximate normality.
We estimated the different indices of repeatability (R
for maximum distance, trip duration, path length and
straightness index) with 2 methods. First, we calcu-
lated R controlling for year (fixed effect) and then
removing the phenotypic variance of this fixed
parameter (adjusted repeatability). Secondly, we de -
termined R using non-adjusted repeatability, a tech-
nique which includes the phenotypic variance of the
fixed effect to the denominator of the repeatability
equation; therefore, we did not lose the variance
explained by year. As year did not explain a substan-
tial amount of phenotypic variance, we only present
the results for non-adjusted repeatability. Bearing
was analysed using a circular ANOVA from the ‘cir-
cular’ package. For this parameter, R was calculated
using the between- (S2

A) and within-group (S2) vari-
ance (see Lessells & Boag 1987):

R = S2
A / (S2 + S2

A) (3)

where S2
A = (mean squarebetween-groups − mean

 squarewithin-groups) / coefficient reflecting the average
number of trips per individual, and S2 = mean
squarewithin-groups.

Mean squares both between- and within-groups
were obtained from the output of the circular
ANOVA. We considered consistency in foraging be -
haviour during consecutive trips high when R > 0.50,
moderate when 0.25 < R < 0.50 and low when R <
0.25 (Potier et al. 2015).

2.4.  Individual level consistency

To compare consistency between individuals over
a short period of time (consecutive trips), we calcu-
lated an index of foraging consistency (Rind, using
Eq. 3) for each penguin using that individual’s re s i -
dual variance, which was extracted from the  models
used to estimate population-level consistency in for-
aging behaviours following Potier et al. (2015). Pen-
guin ID was set as a random effect in each model. To
calculate Rind, we used the between-individual vari-
ance (S2

A) of the combined 3 yr, as year did not
explain a substantial amount of phenotypic variance
when estimating foraging consistency at the popula-
tion level. Rind was assessed from maximum distance,
trip duration, path length and straightness index, and
ranged from 0 to 1, with a value of 0 representing
a very flexible bird. Because bearing was a circular
variable, we could not extract a residual variance
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from the analyses. We tested whether the number of
trips recorded per individual would affect individual
repeatability in this study (Table S2 in Supplement 3),
but as it did not (p ≥ 0.100 for all foraging parameters,
see Supplement 3), we included all parameters in our
analyses.

We collected information on boldness (attack and
threats), sex and foraging behaviour from a total of
41 individuals (22 females and 19 males). Then, we
determined whether sex, year, attacks or threats in -
fluenced individual consistency (Rind) of the 4  foraging
variables using generalised linear models (GLMs;
‘lme4’ package). The numbers of attacks and threats
were weakly and negatively correlated (Traisnel &
Pichegru in press); therefore, both variables were
included in the models. Using the ‘MuMIn’ package,
we applied the small sample size correction of
Akaike’s information criterion (AICc) and estimated
probabilities by averaging the different models. This
technique accounts for model uncertainty by ranking
the combinations of several models (Grueber et al.
2011). Normality and heteroscedasticity of the resid-
uals were checked for each model. Individual consis-
tency in straightness index was log transformed to
approximate normality of the residuals. Boldness
data were not available in 2016; therefore, this year
was not included in these analyses.

2.5.  Breeding success

To estimate whether individual consistency in for-
aging influenced breeding success, we fitted chick
growth rates with the different indices of consistency
(maximum distance, trip duration, path length and
straightness index) using GLMMs and the technique
of model averaging described in Section 2.4. Adult ID
was set as random effect to control for repeated val-
ues, since some nests contained 2 chicks. We in -
cluded an interaction between individual foraging
consistency and year in the models, as individual
consistency varied between years. The relationship
between chick growth rates and hatching order is not
uniform (it changes between years; Sherley 2010) on
Bird Island (Algoa Bay), but recent works suggest
that clutch size (1 or 2 offspring) and chick rank (first-,
second-hatched or single brood) does not influence
chick growth rates (Spelt & Pichegru 2017, Traisnel &
Piche gru 2018, A. McInnes unpubl. data) on this
island. Nevertheless, to control for this parameter, we
included rank as a fixed effect in our model. Prior to
the analyses, we also tested for collinearity between
the different indices of foraging consistency (Rind)

using Spearman’s method (Table S3 in Supplement 4).
Because individual consistency in trip duration and
path length were highly correlated (r = 0.73), we de -
cided to only keep trip duration, as this variable is the
most commonly used to analyse individual consis-
tency (Patrick et al. 2014, Baylis et al. 2015, Potier et
al. 2015), facilitating comparisons with other species.
The remaining variables (Rind in maximum dis tance
and straightness) were also included in the model.

3.  RESULTS

3.1.  Population level consistency

African penguins were generally consistent in their
foraging behaviour, as consistency was significant for
all foraging parameters (Table 2). Repeatability was
high for bearing (R = 0.55) and moderate for maxi-
mum distance, trip duration and path length (0.31 <
R < 0.33; Table 2). Only the straightness index showed
limited consistency (R = 0.14). The confidence inter-
val was wide for 4 of these foraging parameters
(Table 2), possibly indicating relatively high variabil-
ity in individual levels of foraging consistency within
the population. Confidence intervals were not avail-
able for bearing because the method used to deter-
mine repeatability for this variable did not allow for
such estimation.

3.2.  Individual level consistency

One female was removed from the analyses, since
the high number of threats she displayed (36 in total)
strongly influenced the data.

Individual consistency in foraging behaviours dif-
fered significantly between sexes, with females being
more flexible than males in their maximum distance
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Foraging parameters R CI p

Maximum distance (km) 0.33 0.17−0.49 <0.001
Trip duration (h) 0.33 0.17−0.49 <0.001
Path length (km) 0.31 0.14−0.46 <0.001
Straightness index 0.14 0.01−0.30 0.022
Bearing 0.55

Table 2. Population level of behavioural consistency ob-
served for adult African penguins during the breeding sea-
son on Bird Island, South Africa. Repeatability index (R),
confidence interval (CI) and associated p-value (bold values
represent significant results at p < 0.05) are given for each
foraging parameter. Sample sizes: individuals = 59; trips = 168
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(Rind = 0.71 ± 0.23 and Rind = 0.84 ± 0.14 for females
and males, respectively; z = 2.02, p = 0.045) and their
path length, although the latter was not significant
(Rind = 0.67 ± 0.26, Rind = 0.81 ± 0.20 for females and
males, respectively; z = 1.73, p = 0.083). Individual
consistency in foraging also differed between years,
with individuals being more consistent in their trip
duration (z = 2.37, p = 0.018) and straightness index
(z = 2.25, p = 0.024) in 2017 than in 2015. However,
boldness degree (numbers of attacks or threats) did
not influence individual consistency in any of the for-
aging parameters (all p ≥ 0.245; Table 3).

3.3.  Individual consistency and breeding success

As expected, chick rank did not influence growth
rates (second-hatched: z = 1.40, p = 0.163; single
brood: z = 0.85, p = 0.398; Table 4). However, growth
rates varied between years, with offspring growing

more slowly in 2016 (z = 2.17, p = 0.030; Fig. 1). Indi-
vidual consistency in trip duration influenced growth
rates only in 2016 (z = 2.25, p = 0.024); chicks from
consistent adults grew faster in this year (Fig. 2a).
Growth rates also seemed to increase with individual
consistency in maximum distance in 2016, but this
relationship was not significant (z = 1.41, p = 0.159;
Fig. 2b). Neither consistency in straightness index
nor its interaction with year influenced offspring
growth rates (all p > 0.449; Table 4).

4.  DISCUSSION

This study is one of the few which relates behav-
ioural consistency of 4 foraging metrics to breeding
success. We demonstrated that individual differences
in the consistency of a foraging parameter were
related to chick growth rate (a proxy for breeding
success) in African penguins in 2016, when environ-
mental conditions were poor. We also showed that
individual consistency varied annually and with sex,
suggesting that both intrinsic and extrinsic factors
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Factors Rind maximum distance               Rind trip duration                  Rind path length                 Rind straightness index
z p                             z p z p z p

Year 1.09 0.276                       2.37 0.018 0.67 0.505 2.25 0.024
Attack 1.16 0.245                       1.10 0.269 1.16 0.248 0.79 0.427
Threat 0.32 0.748                       0.20 0.843 0.35 0.724 0.19 0.846
Sex 2.02 0.045                       1.03 0.305 1.73 0.083 0.97 0.333

Table 3. Statistical results from generalised linear models (GLMs) relating individual level consistency (Rind) of 4 foraging
 parameters to intrinsic (sex, attack and threat) and extrinsic (year) parameters. Sample size = 40; significant results (p < 0.05) 

are shown in bold

Factors Chick growth
z p

Year 2016 2.17 0.030
2017 0.46 0.648

Rank Chick B 1.40 0.163
Chick S 0.85 0.398

Rind maximum distance 0.41 0.682
Rind trip duration 0.38 0.704
Rind straightness index 0.29 0.768
Rind maximum distance × year 2016 1.41 0.159

2017 0.49 0.622
Rind trip duration × year 2016 2.25 0.024

2017 0.24 0.807
Rind straightness index × year 2016 0.76 0.449

2017 0.27 0.786

Table 4. Statistical results obtained from averaging models
that related chick growth rates to year, chick rank (single
brood, Chick S; second-hatched chick from a double brood,
Chick B) and individual level of consistency (Rind) of 3 foraging
parameters (maximum distance, trip duration and straightness
index) and their interaction with year.  Sample size of chicks = 

72; significant results (p < 0.05) are shown in bold
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Fig. 1. Average (±SE) growth rates of African penguin
chicks raised on Bird Island, South Africa, in 2015, 2016 and 

2017. Star: significant difference in growth rates
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may predict inter-individual differences in behav-
ioural consistency in African penguins.

Foraging consistency is widely observed in marine
species (guillemots, Woo et al. 2008; albatrosses,
Ceia et al. 2012; gannets, Wakefield et al. 2015; fur
seals, Arthur et al. 2015; elephant seals, McIntyre et
al. 2017), as a possible mechanism to reduce com -
petition (Ceia & Ramos 2015), minimise predation
risks and adapt to resource availability (i.e. ecologi-
cal opportunity, Araújo et al. 2011). However, con -
sistency may differ between species (Phillips et al.
2017), colonies (Camprasse et al. 2017a), individuals
(Potier et al. 2015) and even among the behavioural
parameters considered (Müller et al. 2014). Overall,
behavioural consistency in breeding African pen-
guins was moderate, except for the bearing taken to
the furthest point from the colony, which was highly
repeatable (R = 0.55). Our results are consistent with
previous works on gannets (Patrick et al. 2014) and
cormorants (Potier et al. 2015) but contrast with find-
ings on little penguins Eudyptula minor (Camprasse
et al. 2017a), a species with foraging ranges similar to
those of African penguins and also a specialist feeder
on small pelagic fish. Despite exploring the ocean at
different spatial scales, African penguins, northern
gannets Morus bassanus and great cormorants
Phala crocorax carbo exhibited low to moderate lev-
els of consistency in trip duration, maximum distance
and path length at population levels, indicating flex-
ibility in foraging behaviours within the population.
However, all these species exhibited higher levels of
consistency in the bearing (departure bearing or
bearing to the furthest location), indicating that the

birds were relatively faithful to their foraging sites
(Patrick et al. 2014). By contrast, little penguins were
not consistent in bearing between consecutive trips,
probably reflecting the variability in local abundance
and distribution of their prey (Camprasse et al.
2017a). Although bearing is highly dependent on the
geography of the area, the high consistency in bear-
ing demonstrated by African penguins here may
reflect a predictable supply of forage fish in the east-
ern part of Algoa Bay (i.e. where the colony is situ-
ated). Indeed, the Woody Cape coast is known for the
regular occurrence of upwelling cells (Goschen et al.
2012), which boost local productivity. African pen-
guins may make use of oceanographic features to ori-
entate and forage (van Eeden et al. 2016). Indeed,
they target cold surface waters associated with up -
welling cells that are mainly located east and south of
Bird Island, Algoa Bay (van Eeden et al. 2016). Such
oceanic features may predict availability of food
resources, and a good knowledge of their surround-
ing environment may ensure that seabirds consis-
tently head towards such productive areas (Weimers -
kirch 2007). Although African penguins remain mainly
within 45 km of their colony during the breeding sea-
son (Pichegru et al. 2010, 2012, 2013), they exhibit
high flexibility in their foraging routes and time spent
at sea (Table 2). By doing so, they might adjust their
behaviour to fine-scale changes in oceanographic con -
ditions (Weimerskirch 2007) or to the needs of their
offspring (physiological constraints; Potier et al. 2015).

In the present study, African penguins exhibited
sex-specific differences in behaviour, as males and
females contrasted in their level of individual con-
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Fig. 2. African penguins’ chick growth rate versus adults’ consistency (Rind) in (a) trip duration and (b) maximum distance dur-
ing the 2016 breeding season on Bird Island, Algoa Bay. Regression line and 95% confidence intervals associated with the line 

in (a) were extracted from the model
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sistency in some foraging parameters. Overall,
males were more consistent in the maximum dis-
tance at which they foraged from their colony.
Although the results were not significant, they also
exhibited higher levels of foraging consistency than
females in their total distance travelled (path length).
Sex dif ferences in consistency exist in shags (Rat-
cliffe et al. 2013, Harris et al. 2014, Camprasse et al.
2017b), shearwaters (Müller et al. 2014) and alba-
trosses (Patrick & Wei mers kirch 2014b). For all 3
species of shags, females were more consistent than
males in diving behaviour (Ratcliffe et al. 2013,
Camprasse et al. 2017b) and in their spatial use
of habitat (Harris et al. 2014), possibly reflecting
sexual dimorphism in some species. Female imperial
shags Phalacrocorax atriceps are smaller than males
and therefore may be constrained to reduce their
plasticity (Harris et al. 2014). Indeed, by being
smaller, females potentially exhibit higher metabolic
rates per unit mass compared to males (Halsey et al.
2006), which could constrain their capacity to in -
crease their behavioural flexibility. In contrast, male
black-browed albatrosses Thalassarche melanophrys
have a narrower feeding niche width compared to
females. These differences potentially arise from
sexual selection: male albatrosses forage closer to
the colony where competition is high, so that selec-
tion towards specialized individuals may be strong
(Patrick & Weimerskirch 2014b). Finally, sex differ-
ences of in dividual consistency in Scopoli’s shear-
waters Calo nectris diomedea seem to depend on the
behavioural  parameter considered and may reflect
differences in reproductive investment (Müller et al.
2014). Together, these studies  in dicate that sex dif-
ferences in individual consistency might be species-
dependent (Phillips et al. 2017), and to a further
extent, be haviour-dependent. Sexual dimorphism is
limited in African penguins (Pichegru et al. 2013);
therefore, it may not be responsible for the different
levels of individual consistency in maximum dis-
tance observed here. Instead, the difference be -
tween males and females may arise from contrasting
investment in the chick-rearing period (Spelt &
Pichegru 2017, Traisnel & Pichegru in press). In -
deed, female African penguins, within Algoa Bay,
generally exhibit higher foraging effort than males
during the breeding season (Piche gru et al. 2013)
and adjust their nest attendance behaviour to the
brood’s needs (e.g. with chick age; Spelt & Pichegru
2017). Our results support such findings, as females
were more flexible than males, thereby possibly
adjusting their behaviour to the current needs of
their brood.

Along with predation, ecological opportunity (i.e.
diversification of lineages under specific environ-
mental conditions; Yoder et al. 2010), intra- and inter-
specific competition (Araújo et al. 2011), as well as
personality may drive individual specialisation and
behavioural consistency (Toscano et al. 2016). While
boldness (number of attacks and threats) was previ-
ously shown to relate to foraging and diving strate-
gies in African penguins (Traisnel & Pichegru in
press), it did not influence individual consistency
in foraging behaviour here. Other factors could also
have contributed to the observed individual differ-
ences in foraging consistency, such as age/experi-
ence (Phillips et al. 2017), although they were not
examined in the present study.

Interestingly, individual behavioural consistency
varied between years, and penguins were more
 consistent in trip duration and straightness index
when environmental conditions were less profitable
(Supplement 2). Likewise, Ceia et al. (2014b) and
 Camprasse et al. (2017a) found individual consis-
tency to vary between years in Cory’s shearwaters C.
diomedea and little penguins E. minor, respectively.
These variations are likely to reflect availability and
predictability of resources (Woo et al. 2008) around
the colony. As mentioned previously, it is possible
that although Algoa Bay is considered to be a fluc -
tuating system, resources may be relatively predict -
able due to the regular presence of upwelling cells
(Goschen et al. 2012), even when these are less strong.
Indeed, along with availability, resource predictabil-
ity may increase individual consistency and reduce
the energetic cost of foraging (i.e. creating a selective
advantage; Arthur et al. 2015, Phillips et al. 2017).

In 2016 only, when chick growth rates were the
lowest of our sampling period (Fig. 1), chicks raised
by parents that were more repeatable in their trip
durations grew faster, regardless of their rank
(Fig. 2a). These results must be interpreted with cau-
tion, as only 1 adult from each nest was considered
here. African penguins share parental care duties
during the brooding period (Randall & Randall 1981);
therefore, considering the behaviour of the 2 parents
in relation to breeding success could have strength-
ened our conclusions about their breeding ecology.
Nonetheless, our results agree with those reported
for black-browed albatrosses (Patrick & Weimer-
skirch 2014b, 2017) and pigeon guillemots (Golet et
al. 2000), for which repeatable individuals had higher
fit ness. However, they do contrast with previous
studies on Brünnich’s guillemot Uria lomvia (Woo et
al. 2008), for which diet specialisation did not affect
breeding success. As suggested by Woo et al. (2008),
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specialist and generalist strategies may balance
themselves on a long-term scale, as each strategy
may increase fitness under variable levels of prey
availability and predictability. Such changes may
occur at different time scales throughout the differ-
ent ecosystems, thereby reflecting the diversity of
findings observed in the literature. In our study, the
benefits of foraging consistency were only visible in
one year and for one behaviour. In 2016 and 2017,
prey availability around the island was low in com-
parison to 2015, but the benefits of consistency only
paid off in 2016, when resources were the lowest
recorded (Supplement 2). Two hypotheses arise: (1)
penguins may increase their consistency in foraging
to face poor resource conditions and potentially
increase their breeding success. Indeed, Weimers -
kirch et al. (2000) demonstrated that chicks fed more
regularly by adult albatrosses had higher growth
rates than chicks fed less regularly. We could also
assume that (2) poor conditions may select for consis-
tent individuals in trip duration which exhibit higher
success when resource availability is extremely poor.
While we suggested that individual consistency
could be advantageous, the relatively high variability
of strategies observed may suggest that benefits of
being consistent or flexible vary with environmental
conditions. Although we did not find evidence that
flexible penguins were advantaged in our study, the
second hypothesis would explain the persistence of
both consistent and flexible strategies in the popula-
tion, as suggested by Woo et al. (2008). As demon-
strated in northern elephant seals, the fitness advan-
tages of being site-faithful vary with environmental
conditions (Abrahms et al. 2018). In their study, site-
faithful individuals exhibited a higher mass gain in
the neutral phase of the Pacific Decadal Oscillation,
but this relationship was reversed in positive phases.
It is not clear at this stage whether individual African
penguins adapt their level of short-term consistency
in foraging to the changing conditions or maintain
their strategy across years. Further studies investi-
gating the behaviour of the same individual across
years would be necessary to answer that question.
However, in an environment with extremely poor
resources (i.e. in 2016; Supplement 2), consistency in
foraging seems to increase breeding success in
African penguins. By being flexible when resources
are possibly predictable but of low availability, pen-
guins may increase the energetic cost of changing
foraging sites (Arthur et al. 2015) and reduce energy
available to maintain their offspring.

This study is one of few to test the impact of individ-
ual foraging consistency on breeding success in a

marine species. We demonstrated that in poor forag-
ing conditions, endangered African penguins that
showed a high level of consistency in their foraging
behaviour were more successful than less consistent
parents. Although our results bring new insight into
the field of repeatability, other aspects of African pen-
guin ecology (e.g. experience/age, social inter action)
that could predict inter-individual variations in forag-
ing consistency still need to be considered. In addi-
tion, as breeding success depends on both members
of a pair, studying individual consistency in relation
to the partner’s behaviour would offer a closer look
into the breeding ecology of this seabird. Long-term
consistency monitoring could clarify or confirm
whether individual consistency in trip duration is ad-
vantageous in years of poor environmental conditions.
Finally, such monitoring may also help in under -
standing if African penguins can switch between con-
sistency and flexibility on short- and long-term scales
to increase their chances of coping with environmen-
tal variability, and, to a further extent, climate change.
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