ABSTRACT: Insight into the trophic ecology of marine predators is vital for understanding their ecosystem role and predicting their responses to environmental change. Juvenile southern elephant seals (SES) *Mirounga leonina* are considered generalist predators within the Southern Ocean. Although mesopelagic fish and squid dominate their stomach lavage samples, the stable isotope profile captured along the length of sampled vibrissae of young SES at Macquarie Island, southwest Pacific Ocean (54.5° S, 158.9° E) recently emphasized the contribution of crustaceans to their diet (likely *Euphausia superba*). Herein, we used the stable isotope values of sampled vibrissal regrowths with known growth histories to assess the diet of juvenile SES at Marion Island, southern Indian Ocean (46.8° S, 37.8° E) on a temporally integrated basis. We specifically aimed to quantify the possible contribution of crustaceans to the diet of juvenile SES. Sequentially (chronologically) sampled vibrissal regrowths of 14 juvenile SES produced fine-scale dietary information spanning up to 9 mo. The depleted stable isotope signatures of nitrogen (δ^{15}N) (8.5 ± 0.6‰) and carbon (δ^{13}C) (−20.3 ± 0.1‰) measured during the period of independent foraging suggested the use of a lower trophic level diet within the Polar Frontal Zone. A mixing model predicted that up to 76% of juvenile SES diet comprised crustaceans, consisting of 2 crustacean groups, each contributing 26% (credible interval, CI: 13–39%) and 50% (CI: 35–64%) to their diets, presumably representing subantarctic krill species. This first utilisation of the isotopic signature captured along the length of vibrissal regrowths confirms the inclusion and importance of crustaceans in the diet of juvenile SES.

KEY WORDS: Crustaceans · Diet · Marine mammals · Pinnipeds · Stable isotopes · Vibrissae · Whiskers
ously difficult (Young et al. 2015). Southern elephant seals (SES) *Mirounga leonina*, for example, are often regarded as top marine mammal predators in the Southern Ocean (e.g. Hüökkstädt et al. 2012a). Yet, their extensive foraging migrations hinder fine-scale, longitudinal dietary assessments through conventional dietary reconstruction approaches, leading to uncertainty about their ecological role as predators.

Stomach lavage samples and stable isotope (hereafter, SI) values of blood and keratinous tissue, such as vibrissae (whiskers), suggest that juvenile and adult SES consume myctophids (lantern fishes) and cephalopods across their entire circumpolar distribution (Daneri & Carlini 2002, Field et al. 2007a, Cherel et al. 2008, Ducatez et al. 2008, Newland et al. 2011). Given the low abundance of crustaceans previously recovered in the stomach contents of SES, their significance has been questioned (Green & Burton 1993, Slip 1995, Burton & van den Hoff 2002, van den Hoff et al. 2003, Field et al. 2007b). The ingestion of krill was previously considered accidental or due to secondary consumption (Slip 1995). Nevertheless, SI analysis of juvenile SES (<1 yr old) vibrissae sampled at Macquarie Island (see Fig. 1) recently led Walters et al. (2014) to recognise juvenile SES as ‘a new krill predator in the Southern Ocean’. In that study, vibrissae were sampled once after the juvenile SES returned from their first ca. 80 to 140 d foraging trip at sea, and 9.1% of the total length of the vibrissae sampled from 7 (out of 12) SES represented active foraging (Walters et al. 2014). The low mean nitrogen stable isotope (\(^{15}\)N) values (9.6‰) suggested a mixed diet of fish, squid, and crustaceans, presumably Antarctic krill *Euphausia superba* (Walters et al. 2014).

However, the overall dietary contribution of crustaceans was not quantified. Moreover, temporal interpretations were biased, as the recently described asymmetric growth rate of SES vibrissae (Lübcker et al. 2016) suggests that merely a small fraction of the Macquarie Island SES’ first foraging trip was likely represented in the vibrissae analysed by Walters et al. (2014).

The Marion Island population of SES represents one of the most northerly breeding SES populations in the Southern Ocean, and unlike Macquarie Island, is situated outside the distributional range of *E. superba* (Pakhomov et al. 1994) (Fig. 1). Yet, even though this SES population has been subject to a multi-decade research programme (Bester et al. 2011), their diet remains unknown. The absence of dietary data impedes our ability to link observed environmental changes to fluctuations in this population’s demographic parameters, including changes in weaning mass (Oosthuizen et al. 2015) and their survival rates (Pistorius & Bester 2002, Pistorius et al. 2004, McMahon & Burton 2005).

The SI values captured along the length of vibrissae are biologically inert after biomolecule deposition (Cherel et al. 2009), providing a fine-scale chronology of dietary data that spans the growth period of the vibrissae (e.g. Beltran et al. 2015, Lübcker et al. 2016). Herein, we used a novel approach to extend the temporal resolution of dietary information obtained from vibrissae by sampling and resampling vibrissae from SES before and after their first foraging trip at sea. By cutting selected vibrissae of recently weaned SES and then sampling the regrowth on the seals’ return to Marion Island, we extended the vibrissal growth period compared with Walters et al. (2014) and enabled a temporally integrated dietary assessment spanning the first year spent at sea (detailed in Lübcker et al. 2016).

The aim of this study was to assess the diet of juvenile SES from Marion Island using the SI values captured along the length of vibrissal regrowths with a known growth history. The study quantifies the dietary composition of juvenile SES during their first foraging trip, with special reference to the possible contribution of crustaceans to their diet. The use of vibrissal regrowths provides the highest resolution, temporally integrated dietary information of juvenile SES to date. Moreover, this study represents the first dietary assessment of SES at Marion Island.

MATERIALS AND METHODS

Study site

Marion Island is the largest of 2 islands in the Prince Edward Islands (PEIs) archipelago, situated within the Polar Frontal Zone (PFZ) (Fig. 1). Juvenile SES at Marion Island predominantly forage in pelagic waters more than 3000 m deep to the southwest of the island, mainly within the PFZ (Tosh et al. 2012, 2015), while being physiologically restricted to the upper 100 to 200 m of the water column (Hindell et al. 1999). Most foraging occurs between 43°S and 56°S, around the Subantarctic Front (SAF) and Antarctic Polar Front (APF), respectively (Tosh et al. 2012). *Euphausia superba* are absent in the waters surrounding the PEIs; the food web is dominated by other euphausiids such as *E. vallentini*, salps, amphipods, and copepods (Pakhomov et al. 1994).
Sample collection

Vibrissae sampling from juvenile SES

Vibrissae were sampled from 2011 to 2013, as part of a long-term mark-recapture programme on SES (Bester et al. 2011). Weaned SES pups (25–60 d old) were sexed, individually marked with hind-flipper tags (de Bruyn et al. 2008), and only the longest mystacial vibrissa on the right muzzle was cut as close to the skin as possible. Vibrissal regrowths are easily identifiable due to their blunt ends; these were subsequently cut when the seals returned after spending between several months and a year foraging at sea (detailed in Lübcker et al. 2016). For the purpose of this study, ‘juvenile’ refers to individuals up to 15 mo old. We analysed vibrissal regrowths of 14 juvenile SES (9 males, 5 females), collected 250 to 419 d (362 ± 56 d; mean ± SD) after the initial sampling (Table 1). The length of the vibrissal regrowths sampled ranged from 46 to 94 mm (mean ± SD = 69.0 ± 13.4 mm). Sampling regrowths from juveniles required chemical immobilisation, administered through an intramuscular injection of ketamine hydrochloride (Bester 1988).
Table 1. The $\delta^{15}N$ and $\delta^{13}C$ (mean ± SD) of the independent foraging trip was obtained from the sequentially sampled vibrissal regrowths of n = 14 individual juvenile southern elephant seals *Mirounga leonina*, sampled during 2012 and 2013 at Marion Island. The percentage of the vibrissae representing independent foraging (independent foraging (%)) and the isotopic niche breadth (standard ellipse area (SEA$_c$)) utilized by each individual are indicated. The displayed $\delta^{15}N$ and $\delta^{13}C$ values (± SD) represent the original values, before applying a trophic enrichment factor for the dietary reconstructions. Resampling dates given as yyyy/mm/dd. M = male; F = female; nd = not computed due to less than 3 segments representing independent foraging

<table>
<thead>
<tr>
<th>Individual</th>
<th>Resampling date</th>
<th>Sex</th>
<th>Length (mm)</th>
<th>Days after initial sampling</th>
<th>Independent foraging (%)</th>
<th>$\delta^{15}N$</th>
<th>$\delta^{13}C$</th>
<th>SEA$_c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG288</td>
<td>2012/10/23</td>
<td>F</td>
<td>81</td>
<td>374</td>
<td>42.9</td>
<td>8.6 ± 0.4</td>
<td>−21.0 ± 0.2</td>
<td>0.13</td>
</tr>
<tr>
<td>PG909</td>
<td>2012/12/13</td>
<td>F</td>
<td>74</td>
<td>397</td>
<td>32.4</td>
<td>8.9 ± 0.3</td>
<td>−20.0 ± 0.1</td>
<td>0.33</td>
</tr>
<tr>
<td>PG924</td>
<td>2012/12/18</td>
<td>F</td>
<td>73</td>
<td>419</td>
<td>21.9</td>
<td>8.1 ± 0.1</td>
<td>−19.7 ± 0.2</td>
<td>0.07</td>
</tr>
<tr>
<td>PG051</td>
<td>2012/09/08</td>
<td>M</td>
<td>81</td>
<td>316</td>
<td>17.1</td>
<td>8.1 ± 0.3</td>
<td>−20.4 ± 0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>PG008</td>
<td>2012/11/14</td>
<td>M</td>
<td>65</td>
<td>388</td>
<td>18.1</td>
<td>8.8 ± 0.2</td>
<td>−20.1 ± 0.1</td>
<td>0.03</td>
</tr>
<tr>
<td>PG030</td>
<td>2012/11/17</td>
<td>M</td>
<td>47</td>
<td>266</td>
<td>19.6</td>
<td>8.5 ± 0.1</td>
<td>−20.0 ± 0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>PG007</td>
<td>2012/11/27</td>
<td>M</td>
<td>94</td>
<td>401</td>
<td>33.3</td>
<td>9.1 ± 0.1</td>
<td>−20.2 ± 0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>PG084</td>
<td>2012/12/13</td>
<td>M</td>
<td>46</td>
<td>405</td>
<td>4.3</td>
<td>9.0 ± 0.2</td>
<td>−21.2 ± 0.1</td>
<td>nd</td>
</tr>
<tr>
<td>YO040</td>
<td>2013/11/29</td>
<td>F</td>
<td>60</td>
<td>380</td>
<td>20.0</td>
<td>8.6 ± 0.2</td>
<td>−20.2 ± 0.2</td>
<td>0.17</td>
</tr>
<tr>
<td>YO064</td>
<td>2013/11/30</td>
<td>F</td>
<td>71</td>
<td>397</td>
<td>22.9</td>
<td>8.4 ± 0.2</td>
<td>−20.0 ± 0.1</td>
<td>0.06</td>
</tr>
<tr>
<td>YO081</td>
<td>2013/07/14</td>
<td>M</td>
<td>79</td>
<td>250</td>
<td>30.8</td>
<td>8.9 ± 0.2</td>
<td>−20.1 ± 0.1</td>
<td>0.02</td>
</tr>
<tr>
<td>YO059</td>
<td>2013/11/30</td>
<td>M</td>
<td>58</td>
<td>392</td>
<td>11.5</td>
<td>6.9 ± 0.5</td>
<td>−20.5 ± 0.1</td>
<td>0.21</td>
</tr>
<tr>
<td>YO067</td>
<td>2013/12/03</td>
<td>M</td>
<td>63</td>
<td>397</td>
<td>15.2</td>
<td>8.6 ± 0.3</td>
<td>−20.7 ± 0.1</td>
<td>0.12</td>
</tr>
<tr>
<td>PG171</td>
<td>2012/08/28</td>
<td>M</td>
<td>75</td>
<td>387</td>
<td>66.7</td>
<td>9.6 ± 1.4</td>
<td>−20.3 ± 0.1</td>
<td>nd</td>
</tr>
</tbody>
</table>

Mean ± SD 69.0 ± 13.4 362.4 ± 56.2 25.48 ± 15.4 8.6 ± 0.3 −20.3 ± 0.1 0.1 ± 0.1

Isotopic values of potential prey

The remote foraging distribution of Marion Island SES prevented direct sampling of potential prey species. Isotopic values of potential prey were obtained from published cephalopod and fish isotopic values for Marion Island (Bushula et al. 2005), Îles Kerguelen (Cherel et al. 2010), and Îles Crozet (Guerreiro et al. 2015). We analysed all comprehensive prey SI datasets available for the south Indian sector of the Southern Ocean that fell within a similar latitudinal range as the foraging range of the Marion Island juvenile SES (43°S to 56°S) (Tosh et al. 2012, 2015).

Myctophids form the bulk of the fish biomass in the Southern Ocean south of the Subtropical Front (Cherel et al. 2010), and supposedly comprise the largest portion of juvenile SES diets (Newland et al. 2011). In the isotopic baseline, we used SI values for the 14 myctophid species representative of the community of myctophids in the Southern Ocean (Cherel et al. 2010). These include the 4 most abundant species: *Electrona antarctica*, *E. carlsbergi*, *Gymnoscelis nicholsi*, and *Krefftichthys anderssoni* (Duhamel et al. 2000, Cherel et al. 2010). We also included the SI values of 2 notothenioids, *Gobionotothen marionensis* and *Lepidontothen iarseni*, sampled at Marion Island (Bushula et al. 2005; Table S1 in the Supplement at www.int-res.com/articles/suppl/m577p237_supp.pdf).

Guerreiro et al. (2015) provided the most comprehensive description of the isotopic niches of cephalopod species occurring in the south Indian sector of the Southern Ocean. We used these published data in our analyses, specifically the lower beak isotopic values of 11 species obtained from diet samples of wandering albatross *Diomedea exulans* at Îles Crozet. We excluded 2 Subtropical Front species (*Histiotuthis atlantica* and *Taonius* sp.), thereby including only cephalopods inhabiting the subantarctic region (carbon stable isotope ($\delta^{13}C$) values ranging from −22.9 to −19.5‰; Guerreiro et al. 2015). Unpublished isotopic values of *Kondakovia longimana* lower beaks from grey-headed albatross *Thalassarche chryostoma* regurgitates at Marion Island nest sites were also included. For the dietary reconstruction, we used Guerreiro et al.’s (2015) adjusted beak isotopic values to represent the soft tissue of squid. The *K. longimana* beaks sampled at Marion Island were adjusted to represent soft tissue by adding 4.86‰ to the $\delta^{15}N$ values for beaks and subtracting 0.75‰ from the beak $\delta^{13}C$ values (Hobson & Cherel 2006), consistent with Guerreiro et al. (2015).

Krill samples were obtained from fresh macaroni penguin *Eudyptes chrysoulphus* and rockhopper penguin *E. chrysocome filholi* diet samples collected during April 2012 and 2013 at Marion Island, and identified using a published key (Baker et al. 1990). Three krill species were identified: *Euphausia valdentii*, *E. frigida*, and *Thysanoessa spp.* (T. vicina
and *T. macrura* are difficult to distinguish morphologically, and classification to genus level sufficed). Partial digestion in the proventriculus of the penguins results in lower $\delta^{15}N$ values (Cherel et al. 2008) and we therefore only included undigested krill specimens; the SI values of these specimens are presumably unaffected by digestion (Cherel et al. 2010). Krill samples were stored at -20°C until analysed. Due to the predominantly pelagic SES foraging strategy at Marion Island, we decided not to include benthic crustaceans, such as the benthic shrimp *Nauticaris marionis*, in our analyses.

SI analysis

The isotopic values captured in the tip of the regrowths represent the pre-foraging period (gestation, lactation, and post-weaning fast), followed by the transition period when the isotopic turnover from the maternally derived SI signature to the SI signature obtained from independent foraging occurs (Lübcker et al. 2016). The transition period is indicated by a ca. 3.7‰ $\delta^{15}N$ depletion (e.g. Walters et al. 2014). The base of the regrowths represents the diet consumed during the independent foraging period (Walters et al. 2014, Lübcker et al. 2016), and we only used segments immediately after the $\delta^{15}N$ depletion occurred for the dietary reconstruction (independent foraging) (Fig. 2). Sample preparation and analyses of vibrissae followed the procedures outlined in Lübcker et al. (2016). Samples were cleaned by sonication in a 1:2 chloroform:ethanol solution, repeated 3 times before rinsing with distilled water and oven-drying for 24 h at 70°C. Vibrissae were sequentially sub-sampled into 2 mm (SD = ± 0.3 mm) sections from the proximal portion (base) to the distal portion (tip), obtaining an average of 33.9 ± 6.8 segments per vibrissa. Each 2 mm section was again sub-sampled, and 0.5–0.6 mg weighed into tin capsules (pre-cleaned in toluene) for SI analysis. The remaining portion was also analysed as a duplicate if a 0.5–0.6 mg sample was still available. Whole, individual krill samples were homogenised, oven-dried, lipid extracted, and decarbonised in a 1 mol HCl l$^{-1}$ solution to remove inorganic carbonates (following Cherel et al. 2008). Cephalopod beaks were stored in 70% ethanol and cleaned with distilled water prior to isotopic analysis, similar to Guerreiro et al. (2015).

Weighed sample aliquots were combusted in an elemental analyser (Flash EA, 1112 Series, Thermo™, Thermo Fisher Scientific), and the $\delta^{13}C$ and $\delta^{15}N$ isotopes were determined using a continuous-flow isotope ratio mass spectrometer (Delta V Plus, Thermo Finnigan) at the Stable Isotope Laboratory of the Mammal Research Institute, University of Pretoria, South Africa. Results are presented using standard delta notation in parts per thousand (‰) relative to an international standard: Vienna PeeDee Belemnite for $\delta^{13}C$ and atmospheric N$_2$ (air) for $\delta^{15}N$. Duplicate aliquots of $n = 112$ samples were interspersed with an in-house standard (Merck gel) and blank after every 10 samples to ensure reproducibility. Reproducibility of $\delta^{13}C$ and $\delta^{15}N$ values based on the standards was <0.20‰, while the reproducibility of duplicate sample aliquots was ±0.27‰ for $\delta^{15}N$ and ± 0.11‰ for $\delta^{13}C$.

Predicting the foraging range of juvenile SES

The predictable latitudinal $\delta^{15}N$ gradient in particular organic matter (POM) in the Southern Ocean allows differentiation between low latitudinal Subtropi-
cal Zone waters and Antarctic Zone (AZ) waters at high latitudes (Trull & Armand 2001). Oceanic fronts are characterised by steep temperature, salinity, and water density gradients, and the PFZ represents a major barrier against the mixing of subantarctic waters to the north and polar surface waters to the south (Durdagoon et al. 2010). The latitudinal gradient in δ13C POM in the Southern Ocean is also reflected in the tissue of predators (Jaeger et al. 2010). Species- and tissue-specific δ13C maps of gradients in SIs (‘isoscapes’; Trull & Armand 2001, Jaeger et al. 2010) enable inference of the latitudes at which consumers foraged.

The latitudinal δ13C gradient around Marion Island was previously characterised using the vibrissae of Antarctic fur seals sampled at the island. Walters (2014) found that the δ13C of the AZ (57.7 ± 1.3° S; δ13C = −21.5 ± 0.7‰) was more depleted relative to the SAF (47.6 ± 1.6° S; δ13C = −19.9 ± 1.2‰), and that the APF was characterised by a δ13C of −20.5 ± 1.2‰. A δ13C difference of ca. 1.6‰ corresponds to a 10° difference in foraging latitude (Walters 2014) and our inference was, therefore, restricted to the allocation of foraging locations to different oceanic fronts or water masses only, as based on the δ13C values of the juvenile SES vibrissae, following Walters (2014). A Pearson’s product-moment correlation test was used to determine the relationship between the vibrissal δ15N and δ13C values, which can be indicative of a shift in the δ15N baseline values between different latitudes.

Statistical analyses

Dietary reconstruction

Bayesian stable isotope mixing models — fitted in R using the Stable Isotope Analysis (SIAR; version 4.1.2) package (Parnell et al. 2010) — were used to reconstruct the juvenile SES diet. A diet to vibrissa-specific trophic discrimination factor (hereafter, TDF) obtained from captive pinnipeds (δ15N = 2.8‰; δ13C = 3.2‰) (Hobson et al. 1996) was used to reconstruct SES diets. SES-specific TDFs are not available, and the TDFs from harp seals Pagophilus groenlandicus, harbour seals Phoca vitulina, and ringed seals Phoca hispida (Hobson et al. 1996; but also c.f. Beltran et al. 2016) are widely used instead (e.g. Eder et al. 2010, Newland et al. 2011, Hückstädt et al. 2012b, Walters et al. 2014). Possible prey items were identified based on their position in the isotope mixing polygon relative to the consumers (‘isospace’ in SIAR) (see the Supplement for details). Based on the SIAR mixing polygon and the applied TDFs, prey species with δ15N above or below 3.7 and 12.8‰ and a δ13C above or below −16.2 and −24.5‰ (adjusted values), respectively, were excluded from further analyses (Fig. S1 in the Supplement). Mixing models cannot differentiate between prey species with similar SI signatures (Phillips et al. 2014) and we clustered prey with similar SI values into groups using the ‘hclust’ package in R version 3.3.1 (Müllner 2013) (Fig. S2 in the Supplement). The identified prey groups were considered unique if they differed significantly in δ15N, δ13C, or both, evaluated using an ANOVA (Table S2 and Fig. S3 in the Supplement). Mixing models will always attempt to fit a model to the data, even if the data are nonsensical, and the SIAR isospace plots were thus scrutinised to ensure that all relevant prey items (among those available) were included or excluded (Phillips et al. 2014).

The proportional contribution of each prey group to the diet of the juvenile SES was determined by running 3 chains of 100 000 iterations, discarding the first 25 000 iterations and then retaining every 25th iteration. A residual error term for δ15N (SD δ15N) and δ13C (SD δ13C) accounts for uncertainties or missing prey sources (Parnell et al. 2010). The mode of the mixing models represents the most likely solution, and we reported the mode, as well as the Bayesian credibility intervals (CI, analogue of frequentist confidence intervals) of the contribution of the different prey groups. Mixing models have the additional advantage of being able to incorporate uncertainty in the TDF and prey isotopic values (Parnell et al. 2010), thereby preventing biased model outputs (see Phillips et al. 2014). To account for the lack of SES-specific TDFs, a standard deviation of 0.3‰ for both δ15N and δ13C were assigned, thereby ensuring conservative data interpretations (Hobson et al. 1996). We included the individual identities of the juvenile SES as a random effect to account for multiple (but variable) number of vibrissal segments sampled per individual, thereby ensuring that each individual has equivalent weight in the analyses.

We assessed the individual juvenile SES isotopic niche breadths using the Stable Isotope Bayesian Ellipses (SIBER) model (Jackson et al. 2011) in the SIAR package. The standard ellipse area (SEA,) provides a measure of the isotopic niche utilised by each individual (Layman et al. 2007, Jackson et al. 2011), and was used to assess the isotopic niche overlap between juvenile SES. The SEA, contains around 40% of the isotopic data, thereby representing the core isotopic niche of each individual while correcting for variable sample sizes (Layman et al. 2007, 2012, Jackson et al. 2011). The isotopic niche overlap...
was calculated from the SEA output after 16 000 iterations (approach detailed in Jackson et al. 2011).

We estimated the daily resolution and temporal span of the dietary data using vibrissal regrowth rates of juvenile SES sampled at Marion Island (Lübcker et al. 2016). The time represented by each 2 mm vibrissal section was determined as:

\[T = \left[-1 \frac{1}{K} \ln \left(1 - \frac{S_T}{A} \right) \right] + T_0 \]

(from Beltran et al. (2015)), where \(S_T \) is the length of the regrowth at time \(T \), \(A \) is the asymptotic length (maximum length that the vibrissa can reach), and \(K \) is the curvature parameter used to describe the vibrissal regrowth trajectories. The vibrissal growth parameters (\(A \) and \(K \)) of the juvenile SES used in this study were estimated in a Bayesian framework, detailed in Lübcker et al. (2016). The time at which growth begins \((T_0) \) was zero, because we cut the vibrissae down to the skin. The maximum growth rate occurs directly after cutting, and because we left a 12 mm portion of the vibrissa embedded when sampled, the maximum growth rate occurred 12 mm from the tip of the new regrowth (see Hall-Aspland et al. 2005). Vibrissae sampled from different positions in the vibrissal bed-map also have different \(A \) and \(K \) values (Beltran et al. 2015). We accounted for this, and for the 12 mm embedded remnant, by using the length of each regrowth plus 12 mm to obtain an estimate of the asymptotic length of each vibrissal regrowth analysed (Lübcker et al. 2016). The vibrissal regrowths were still actively growing when resampled and represented the entire period spent at sea (Lübcker et al. 2016). The 12 mm section again left embedded after cutting the regrowths represents the dietary information captured from September to December (Lübcker et al. 2016). Our results thus refer to foraging from December/January to August during the first year of an elephant seal’s life.

We tested for differences in SI values using appropriate parametric or non-parametric tests, based on the distribution of the values. Values are presented as means ± 1 SD. Statistical significance was assumed at \(p < 0.05 \). All analyses were done in R version 3.2.3 (R Core Team 2015).

RESULTS

Isotopic signature of vibrissal regrowths

There were no significant interannual differences in the isotopic values measured along the length of vibrissae collected in 2012 and 2013 (Wilcoxon rank sum test: \(\delta^{15}N, W = 25472, p = 0.6; \delta^{13}C, W = 286466, p = 0.09 \)). The \(\delta^{13}C \) for 2012 and 2013 differed by 0.05‰, while the \(\delta^{15}N \) differed by 0.1‰. The \(\delta^{13}C \) and \(\delta^{15}N \) values differed significantly between males and females (Wilcoxon rank sum test: \(\delta^{13}C, W = 38820, p < 0.01; \delta^{15}N, W = 23423.5, p = 0.03 \)). However, the difference in the \(\delta^{13}C \) and \(\delta^{15}N \) between males and females was only 0.3‰ and 0.2‰, respectively, and we pooled the data across years and sexes for subsequent analyses.

The \(\delta^{15}N \) and \(\delta^{13}C \) values during the pre-foraging, transition, and independent foraging periods were isotopically distinct from each other (\(\delta^{15}N \): Kruskal-Wallis \(\chi^2 = 259.9, df = 2, p < 0.001 \); \(\delta^{13}C \): Kruskal-Wallis \(\chi^2 = 19.7, df = 2, p < 0.001 \)). During the pre-foraging period, \(\delta^{15}N \) values ranged from 10.9 to 12.2‰ (11.6 ± 0.4‰), and \(\delta^{13}C \) values from −19.2 to −21.2‰ (−20.1 ± 0.5‰). The transition period was represented by a 2.7 to 5.7‰ \(\delta^{15}N \) depletion (difference in \(\delta^{15}N = −3.7 ± 0.8‰ \)) (Fig. 3). The mean \(\delta^{15}N \)
values during the independent foraging period were significantly lower than during the pre-foraging period (p < 0.001), while the Δ13C values were within 0.2‰ of the independent foraging Δ13C values. The Δ15N values during the independent foraging phase ranged from 6.9 to 9.6‰ (8.6 ± 0.3‰), while the Δ13C values ranged from −19.7 to −21.2‰ (−20.3 ± 0.1‰). From 4.3 to 66.7% (or 1.9–50 mm) of the total vibrissal length represented independent foraging (Table 1).

One individual (PG171) was considered an outlier (Fig. 3) and was excluded from further analyses. Similar to that observed for most of the other individuals, the Δ15N of PG171 became depleted by 3.0‰ during the isotopic transition from resources obtained during lactation to active foraging (Fig. 3). In contrast to all other individuals, its Δ15N value then increased again by 2.6‰ during the independent foraging period, before again decreasing by 3.2‰.

During the independent foraging period (Fig. 4), we detected significant inter-individual differences in both Δ15N (Kruskal-Wallis χ² = 76.6, df = 12, p < 0.001) and Δ13C (Kruskal-Wallis χ² = 90.2, df = 12, p < 0.001) values. The measured Δ15N values ranged between 6.9‰ and 9.6‰. The maximum Δ13C value (−19.4‰) differed by 1.9‰ from the minimum Δ13C value (−21.3‰), defining the latitudinal extremes of their foraging range. Foraging occurred predominantly within the PFZ, south of the SAF (Fig. 4), corresponding to a Δ13C range of −19.7 to −21.2‰ (mode = −20.1‰). Foraging also occurred in the Subantarctic Zone (SAZ), and 2 individuals (PG090 and PG288) likely foraged in the AZ. The Δ15N increased by 0.19‰ for every 1‰ Δ13C increment (Fig. S4 in the Supplement), but this correlation was not significant (Pearson’s R² = 0.16 [95% confidence interval: −0.03–0.34], p = 0.09).

A Wilcoxon rank sum test indicated that the Δ15N and Δ13C values in the first half of vibrissal regrowths did not differ significantly from the second half (Δ15N: W = 1190, p = 0.14; Δ13C: W = 1236.5, p = 0.23), although growth rate differences between the 2 halves were disregarded. Individual SEA values ranged between 6.9‰ and 9.6‰ (8.6 ± 0.3‰), while the Δ13C values ranged from −19.7 to −21.2‰ (−20.3 ± 0.1‰).
from 0.01 to 0.33 (Table 1), each substantially smaller than the overall juvenile SES SEAc of 0.8. In the portion of vibrissal regrowth that represented independent foraging, each 2 mm segment represented an average period of 14.3 ± 0.7 d. The period ranged from 6.7 d for longer, faster-growing regrowths, to 33.8 d for regrowths near their asymptotic lengths (e.g. YO064) (Fig. 5). The C:N ratio (% weight) was 3.15 ± 0.1 for all 474 vibrissal segments analysed.

Dietary reconstruction

Three prey groups were included in the final juvenile SES diet model (detailed in the Supplement). Prey group 1 comprised *Euphausia vallentini* and *E. frigida*, and these krill species were predicted to contribute 26% (13–39%) to the diet of juvenile SES. Prey group 2 also consisted of krill (*Thysanoessa* spp.) and contributed 50% (35–64%) to the diet. Prey group 3, which contributed 23% (13–35%) to the diet, included 4 myctophid fish species (*Protomyctophum gemmatum*, *P. bolini*, *Gymnoscopelus braueri*, *Krefftichthys anderssoni*), a nototheniid fish (*Lepidonotothen larseni*), and a cephalopod (*Martialia hyadesi*) (Table S1 in the Supplement) (Fig. 6). Prey groups 1 and 2, which both consisted of crustaceans sampled at Marion Island, were separated by a 2.1‰ δ^{15}N and 1.8‰ δ^{13}C difference in their isotopic values (Table S1 in the Supplement). The sum of the modes of the individual contributions of groups 1 and 2 indicated a 76% contribution of crustaceans to the diet, compared with a 23% contribution of crustacean-predating cephalopods and myctophid fishes. The contribution of myctophid-predating cephalopods and myctophids occupying a higher trophic level (groups 4 and 5) was negligible (<1.0%), and was excluded from the final model (detailed in the Supplement).
The final model’s modal residual error term for δ\(^{15}\)N (SD δ\(^{15}\)N) and δ\(^{13}\)C (SD δ\(^{13}\)C) was 0.13\(‰\) and 0.15\(‰\), respectively. This is lower than the reported standard reproducibility (<0.20\(‰\)), indicating good model performance. Prey group 2 correlated negatively with prey group 1 (correlation coefficient = 0.64) and 3 (0.45), while prey group 1 correlated negatively with prey group 3 (0.40).

DISCUSSION

This study represents the first dietary investigation of SES at Marion Island. The low δ\(^{15}\)N (8.6 ± 0.3\(‰\)) values obtained indicated that both male and female juvenile SES fed on relatively low trophic level prey during their first year at sea (Fig. 6). Their δ\(^{15}\)N isotopic value was 1.0\(‰\) lower than that reported for the krill-feeding juvenile SES from Macquarie Island (Walters et al. 2014) and 1.6\(‰\) (ca. half a trophic level) lower than reported for myctophid-feeding adult female SES from, for example, the Antarctic Peninsula (δ\(^{15}\)N: 10.4 ± 0.8\(‰\)) (Hückstädt et al. 2012b) where the δ\(^{15}\)N baseline values are more depleted (Jaeger et al. 2010). Our data, therefore, supports the notion that juvenile SES include large proportions of crustaceans in their diets.

The isotopic dietary reconstruction presented in this study relies on the accurate representation of the prey isotopic values (baseline) consumed by the juvenile SES. We included all the comprehensive prey SI data available for the south Indian sector of the Southern Ocean, as well as prey sampled at Marion Island. However, the δ\(^{13}\)C values indicated that different individuals foraged at different latitudes, and associated changes in the δ\(^{15}\)N baseline values can influence isotopic dietary reconstructions (Phillips et al. 2014). The δ\(^{13}\)C values suggested that most of the individuals foraged within a narrow latitudinal range, with foraging occurring predominantly within the PFZ (Fig. 4), near the APF (Fig. 1). The predicted foraging range is consistent with satellite-linked tracking data for juvenile SES at Marion Island (Tosh et al. 2012, 2015). Two individuals likely foraged in the SAZ and AZ. The SEA\(_C\) values of the juvenile SES also indicated that they utilised a restricted, specialised niche, consuming prey with similar δ\(^{15}\)N values, irrespective of their δ\(^{13}\)C. We thus considered the variability in the baseline δ\(^{15}\)N values between the SAF and the northern edge of the APF negligible (see Jaeger et al. 2010).

The correlation between the δ\(^{15}\)N and δ\(^{13}\)C measured in the vibrissae of the juvenile SES (equation in Fig. S4 in the Supplement) suggested that the δ\(^{15}\)N value differs by 0.3\(‰\) between the extremes of their foraging latitude, corresponding to a δ\(^{13}\)C range of −19.7\(‰\) to −21.2\(‰\). We included a standard deviation of 0.3\(‰\) for both δ\(^{15}\)N and δ\(^{13}\)C to account for the lack of SES-specific TDFs, and we are confident that the latitudinal variation in the baseline δ\(^{15}\)N values would not have a large influence on our dietary model predictions. Yet, our correlation is based on the assumption that all the juveniles consumed similar prey while foraging at different latitudes. The δ\(^{13}\)C values of the Marion Island juvenile SES were more enriched than those of SES from Macquarie Island (δ\(^{13}\)C: −21.2 ± 0.4\(‰\), ranging from −20.6 to −21.8) that are known to consume Euphausia superba further south (Walters et al. 2014, also see Newland et al. 2011). This suggests that our assumption that individuals foraging further south might also include crustaceans in their diets is reasonable. Our included prey isotopic baseline likely represented δ\(^{15}\)N baseline values of the SAF, PFZ, APF, as well as the northern portion of the AZ. Nevertheless, both prey and predator are not strictly constrained by oceanic fronts and SES consume prey from multiple water masses. The latitudinal variation in the baseline δ\(^{15}\)N values, within the narrow foraging range of the juvenile SES, is unlikely to have adversely affected our dietary model predictions. The baseline δ\(^{15}\)N values, however, are known to decrease south of the APF (Jaeger et al. 2010), and we advise caution when interpreting the dietary results of individuals known to forage close to the sea-ice edge within the AZ.

The similarity in the δ\(^{15}\)N values between predators sampled at Marion Island, Îles Kerguelen (Cherel et al. 2010), and Îles Crozet (Guerreiro et al. 2015) in the south Indian sector of the Southern Ocean (Cherel & Hobson 2007, Cherel et al. 2007, Jaeger et al. 2010, 2013), supports the inclusion of the selected prey isotope values used herein to study the trophic ecology of juvenile SES at Marion Island.

Our results indicated that the diet of juvenile SES at Marion Island consists predominantly of crustaceans and crustacean-consuming cephalopods and myctophids (23\%) (Fig. 6). Crustaceans from prey groups 1 and 2 contributed 26\% (13–39\%) and 50\% (35–64\%), respectively, to the diet of juvenile SES. This suggests that the cumulative contribution of crustaceans (likely pelagic, subantarctic krill species) is 76\%. SI analyses, however, are rarely capable of providing species-level dietary information (Post 2002). Nevertheless, the low modal residual error term of the model for both isotopes (SD <0.16\%), suggests that low inter-individual variability occur-
red in SES foraging strategy, and that the included prey species were sufficient to explain their diet. Our results are contrary to the expectation that recently weaned SES pups should have a broad dietary niche given their naïvety (e.g., Bornemann et al. 2000).

Crustaceans have been found in the stomach contents of various age-class SES at numerous localities, including Windmill (in the AZ), Heard, and Macquarie islands (Green & Williams 1986, Green & Burton 1993, Slip 1995, reviewed by Burton & van den Hoff 2002, van den Hoff et al. 2003, Field et al. 2007b), but their significance was unclear (Slip 1995). Walters et al. (2014) were the first to show that crustaceans are important prey for juvenile SES. However, the common occurrence of undigested Euphausia vallentini in previous studies (Slip 1995, Burton & van den Hoff 2002, van den Hoff et al. 2003) should have suggested direct ingestion. The depleted δ15N values observed after weaning in the dentine growth layers of SES at Kerguelen Island is potentially also indicative of a crustacean-based diet there (Martin et al. 2011). Yet, the isotopic data and dietary models that we report show that juvenile SES from Marion Island clearly have a narrow diet, consisting of crustaceans during their first foraging trip. Moreover, this population represents one of the northernmost, pelagic-feeding SES populations without proximate access to E. superba. Despite the foraging habitat differences between Macquarie (Walters et al. 2014) and Marion islands, the Marion juvenile SES seem to predominantly consume crustaceans.

Copepods and amphipods (mainly Themisto gaudichaudii) were also identified previously in the stomach contents of SES (Green & Burton 1993, Slip 1995, Field et al. 2007b) and our results may have been affected by small contributions of such crustacean species. However, the lack of SI data for many crustacean species, and the expected similarity in the isotopic values among species prohibits distinguishing the species-specific contribution of various crustaceans using SI analysis.

Cephalopods and myctophid fishes constitute a major dietary component of a wide range of marine mammals (Slip 1995, Collins & Rodhouse 2006, Pakhomov et al. 2006, Cherel et al. 2010). Yet, the enriched δ15N values of the cephalopods and larger myctophid species, with available data (Cherel et al. 2011, Guerreiro et al. 2015), suggested a limited contribution to the diet of juvenile SES at Marion Island. The contribution of both lower trophic level myctophid fishes and cephalopods (prey group 3) ranged from 13 to 35% (Fig. 6). In contrast, stomach contents from juvenile SES at Macquarie Island suggested that cephalopods dominated the diet of 1- to 3-yr-old SES (Burton & van den Hoff 2002, van den Hoff 2004, Field et al. 2007a). The difference can likely be attributed to the retention of cephalopod beaks, resulting in over-representation in stomach content analyses (Field et al. 2007a). Kondakovia longimana are known to contribute to the diet of older SES (Rodhouse et al. 1992, Slip 1995, Cherel et al. 2008), and although our measured δ15N for K. longimana was 4.4‰ lower than that measured at Îles Crozet and Îles Kerguelen (Guerreiro et al. 2015), their contribution was still insignificant and formed part of the excluded prey group 4.

One individual (PG288) that foraged further south than the other individuals (potentially to the sea-ice edge), had a predicted diet consisting almost entirely (90%; 81–95% CI) of crustaceans, but the difference in the δ15N baseline values might have contributed to this prediction (Fig. 6). The δ15N of the outlier (PG171) excluded from the dietary reconstruction, suggested a diet shift from crustaceans to higher trophic level prey, and then back to crustaceans, which is plausible (Fig. 3). However, the atypical, enriched δ15N values after the initial δ15N depletion were similar to the post-moult fasting δ15N values, and it is also possible that this individual went into a catabolic state (starvation or fasting), inducing remetabolisation of stored reserves, which might still represent the post-weaning δ15N values. Nevertheless, a similar pattern has not been observed in an additional n = 22 juvenile SES vibrissa regrowths, also sampled at Marion Island (Mammal Research Institute unpubl data).

We resampled vibrissal regrowths after 362 ± 56 d, and 25.5 ± 15.4% of the vibrissae represented the independent foraging period from January to September (Fig. 5). This novel approach using vibrissal regrowths increased the portion of the vibrissa representing independent foraging by 2.8 times, compared with Walters et al. (2014) (Fig. 5). Nevertheless, we found no dietary differences between the first and second portion of the vibrissal regrowths representing the independent foraging period.

Mixing models are sensitive to missing prey species and require accurate TDFs (Bond & Diamond 2011, Phillips et al. 2014). We acknowledge that the 3 krill species included in the model are not representative of all the zooplankton taxa found in the epipelagic zone of the Southern Ocean (Pakhomov et al. 1994). Sampling krill in the remote vicinity of Marion Island is logistically challenging. However, the δ15N of the E. vallentini (δ15N: 3.4 ± 0.5‰) included in this study was similar to that reported for adult E. vallen-
ti (δ15N: 3.7‰) sampled at Marion Island during 1998 (Gurney et al. 2001), suggesting that the SI values of the included krill species were reliable. We considered the included krill species sufficient for estimating the contribution of krill to the diets of juvenile SES. Clustering isotopically indistinguishable prey species into different groups reduces the risk of model over-parametrisation (reviewed in Phillips et al. 2014), while also reducing the potential of missing prey species to negatively affect the model performance (e.g. Hindell et al. 2012, Walters 2014). Adding additional crustacean species sampled at Marion Island may alter the mean δ15N and δ13C values of the prey groups, but is unlikely to affect the broad qualitative outcome of the model.

Although SES-specific TDFs are still unavailable, the δ13C (3.5‰) and δ15N (2.8‰) of an adult female northern elephant seal Mirounga angustirostris was recently determined in a controlled feeding trial by Beltran et al. (2016). Our applied δ15N (2.8 ± 0.3‰) was identical to this earlier study, but our applied δ13C (3.2 ± 0.3‰) was 0.3‰ lower, although within range. The TDFs have been found to be similar within a tissue type, regardless of species (Hobson et al. 1996, Beltran et al. 2016), and are more likely to vary with age or physiologically related changes, e.g. reproduction, moul, or when nutritionally stressed (Beltran et al. 2016). The δ15N of 5 phocids (n = 6 individuals) published in Table 4 of Beltran et al. (2016) was 2.96 ± 0.3‰, similar to our applied 2.8 ± 0.3‰, but the δ15N was 3.95 ± 0.1‰ for spotted seals Phoca largha (Beltran et al. 2016). The reason for the higher δ15N in spotted seals is unclear. Nevertheless, the use of the TDFs herein, provided by Hobson et al. (1996), follows the approach of Walters et al. (2014), who were the first to suggest that juvenile SES might consume krill, enabling a direct comparison with their findings. Still, as with previous studies (e.g. Eder et al. 2010, Newland et al. 2011, Hückstädt et al. 2012b, Walters et al. 2014), the validity of this study hinges on the utilised TDFs.

CONCLUSIONS

The depleted δ15N values measured along the length of vibrissal regrowths collected from Marion Island juvenile SES clearly indicated that they are consuming relatively low trophic level prey, despite foraging at different latitudes at Marion Island. This first dietary assessment of SES at Marion Island improves our understanding of the role and trophic position of juvenile SES in the Southern Ocean and clearly indicates the overwhelming importance of crustaceans as prey to juvenile SES. Dietary differences among different SES age-classes may govern their age-specific response to fluctuations in prey abundance. Furthermore, this study provides an example of how sequentially sampled vibrissal regrowths with a known growth history can be utilised to obtain high resolution, temporally integrated dietary information. By sampling actively growing vibrissae (regrowths), we maximised the temporal span and daily resolution of the dietary data obtainable for juvenile SES during their first foraging trip. However, increased isotopic characterisations of prey species at the foraging grounds of SES and SES-specific TDFs are required to enhance the model predictions.

The lack of available latitudinal prey isotopic baseline values for the Indian sector of the Southern Ocean hinders fine-scale dietary reconstructions incorporating differences in the δ15N baseline values of animals that forage at different locations. Direct sampling of prey at the foraging localities of the juvenile SES, which is logistically and financially challenging, is required to account for the variation in the baseline δ15N values. The advent of amino acid δ15N compound-specific stable isotopes (AA-CSIA) might be able to better characterise the trophic level utilised by individuals foraging at different locations. The advantage of AA-CSIA is that the δ15N of source (or essential) amino acids reflects the δ15N supporting the primary production at the base of the food web, eliminating the need to characterise the baseline δ15N values to infer the trophic position of a predator (Vander Zanden et al. 2013).

Acknowledgements. The project has ethics clearance from the Animal Use and Care Committee (AUCC) of the Faculty of Veterinary Science, University of Pretoria, under AUCC 040827-022, AUCC 040827-023, AUCC 040827-024 and EC030602-016, and was carried out under permit from the Director-General: Department of Environmental Affairs, South Africa. Funding for the project was obtained from the South African Department of Science and Technology (DST) and National Research Foundation (NRF), grant number 93071. The conclusions drawn and discussed are attributed to the authors and not necessarily to the NRF. The Department of Environmental Affairs provided logistical support for ongoing fieldwork at Marion Island, under the South African National Antarctic Programme (SANAP). The ‘Grant in Aid of Research’ provided additional funding, obtained from the Society for Marine Mammalogy. We are also grateful to Prof. Yves Cherel for his comments on an earlier version of the manuscript, as well as to all the Marion Island personnel that faithfully performed their duties beyond expectation. Special thanks to William Haddad, Mia Wege and Nicolas Prinsloo, as well as to Dr. Grant Hall, Stable Isotope Laboratory, University of Pretoria.
LITERATURE CITED

Hobson KA, Cherel Y (2006) Isotopic reconstruction of mar-

Editorial responsibility: Peter Corkeron, Woods Hole, Massachusetts, USA

Submitted: November 11, 2016; Accepted: June 27, 2017

Proofs received from author(s): August 11, 2017